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Summary

Our problems are about

« the correspondence a <—> a between physical quantities 2 and quan-
tum operators a (quantization) and

B the possibility of understanding the statistical character of quantum
mechanics by averaging over uniquely determined processes as in classical
statistical mechanics (interpretation).

o and B are closely connected. Their meaning depends on the notion of
observability.

We have tried to put these problems in a form which is fit for discus-
sion. We could not bring them to an issue. (We are inclined to restrict
the meaning of « to the trivial correspondence a — a (for lim # — 0) and
to deny the possibility suggested in B).

Meanwhile special attention has been paid to the measuring process
(coupling, entanglement; ignoration, infringement; selection, measure-
ment). '

For the sake of simplicity the discussion has been confined to elemen-
tary non-relativistic quantum mechanics of scalar (spinless) systems with
one linear degree of freedom without exchange. Exact mathematical
rigour has not been aimed at.

1. Statistics and correspondence.

1.01 Meaning. When poring over
a the correspondence a4 <— a between observables a4 and the
operators a, by which they are represented in elementary quan-
tum mechanics,
B the statistical character of elementary quantum mechanics
(we need o for ), we run a continuous risk of lapsing into meaning-
iess problems. One should keep in mind the meaning of the concep-
tions and statements used. We only consider
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M,: observational meaning, determined by the relation with what

is (in a certain connection) understood as observation,

M;: formal meaning, determined with respect to the mathematical

formalism without regard to observation.

Only M, is of physical interest, M, is only of academic interest.
Dealing with M; may sometimes suggest ideas, fruitful in the sense
of M,, but may often lead one astray.

1.02 Quantization. Very simple systems suffice for demonstrating
the essential features of « and 8. In elementary classical point me-
chanics a system is described by the coordinates ¢ of the particles
and the conjugate momenta p. We only write down a single set p,g,
corresponding to one degree of freedom. Any other measurable
quantity (observable)  of the system is a function a(p,q) of $ and ¢
(and possibly of the time ). The equations of motion can be express-
ed in terms of Poisson brackets

da 0b  0Oa 0b
When the same system is treated in elementary quantum me-
chanics, the (real) quantities @ are replaced by (Hermitian)
operators a, which now represent the observables. In the equations
of motion the Poisson brackets (1.01) are replaced by the ope-
rator brackets

(a,b] =% (ab—ba) (h=2£n, h Planck’s constant of action). (1.02)

Problem «, is to find the correspondence a — a (other problems
o are stated further on).

1.03 Statistical character. The statements of quantum mechanics
on observations are in general of statistical character. Problem 8 is
whether the statistical quantum processes could be described by a
statistical average over uniquely determined processes (statistical
description of the Ist kind, type S) or not (statistical description of
the 2nd kind, type S?). The observability of the uniquely determined
processes may be required (proper statistical description, type S,) or
not (formal statistical description, type S;). (Classical statistical
mechanics, e.g. are properly of the st kind, type S}).

1.04 Transition operator. Before going on we have to deal for a
moment with the operators and the wave functions.
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TheHermitian operators a form a non-commutative ring. The
normalized elements (wave functions) of (generalized) Hilbert
space on which they act from the left are denoted by ¢,, the adjoint
elements on which they act from the right are denoted by ¢',. Unless
otherwise stated the inner product of ¢}, and ¢, is'simply written
¢L¢,- The outer product of ¢}, and ¢, defines the transition operator

k, = o0, ki, =k, (1.03)

Take a complete system of orthonormal wave functions ¢,. The
orthonormality is expressed by »

Phey = By (1.04)

%cp#cp,,, = 1L (1.05)

In continuous regions of the parameter p. the Weierstrasz
d-symbol must be replaced by the Dirac 3-function and the sum
by an integral. (1.04) and (1.05) show that every (normalizable)
function ¢ can be expanded into

the completeness by

¢ = :Z.f“ Ppu with fo= (pL 0. (1.06)

k,, and k}, transform ¢, and ¢}, according to
Ky 0p = 98, and o K}, = 3,0} (1.07)
(that is why they are called transition operators). (1.04) gives ‘
kK = K8, (1.08)
In particular k,, and k,, are for p v orthogonal projection

operators (belonging to ¢, and ¢, respectively).

The trace of an operator a (resulting when a acts towards the
right upon itself from the left, or opposite; when it bites its tail)
is {according to (1.05)) defined by ‘

Tra = % Pha g, _ (1.09)
(Because the right hand member is invariant under unitary trans-

formations of the ¢,, this definition is independent ‘of the special
choice of the complete orthonormal system of ¢,). This gives

Tr(k,a) = ¢l a ¢, (1.10)
(1.04) and (1.05) can be written '
‘ Trk,, =3, (1.11)

%k“" =1 (1,12)
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and further imply
Tr(KuKyp) = 3uu8,, (1.13)

E k,, Tr(k,a) = a (for every a). (1.14)

(1.13) and (1.14) show that every operator a (with adjoint a') can
be expanded into

a =E;oz,,“k,w with «,, = Tr(k,,a). (1.15)
«,, is the matrix element (1.10) of a with respect to ¢, and ¢,.
It follows further that if Tr(ac) = O for every a, then ¢ = 0 and
therefore (1.14) is equivalent to )

% Tr(k,,b) Tr(k,a) = Tr(ab) (for everyaand b). (1.16)
v

Further
Tr(ab) = Tr(ba). (1.17)

When a is a Hermitian operator
al=a, of =a, (1.18)

(the asterik denotes the complex conjugate), the system of eigen-

functions ¢, with eigenvalues a,

ag, = 4,9, (1.19)

can serve as reference system. In this representation (1.15) takes the
diagonal form
a= i_‘.aykw. (1.20)
1.05 Statistical operator *). The quantum state of a system is said
to be pure, if it is represented by a wave function ¢,. The statistical
operator of the state is defined by the projection operator k,,, of ¢,,.
We will see that the part of the statistical operator is much similar
to that of a statistical distribution function. The most general quan-
tum state of the system is a statistical mixture of (not necessarily
orthogonal) pure states with projection operators k,, and non-
negative weights &,, which are normalized by
k=11 (1.21)
"
(In some cases the sum diverges and the right member actually
should symbollically be written as a 8-function). The statistical
operator of the mixture is (in the same way as it would be done for
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a distribution function) defined by

k=Zkk,, (1.22)
“
and because of (1.21) normalized by
Trk = 1. (1.23)

(we will always write 1 for the right member, though in some cases
it actually should be written as a 3-function). For brevity we often
speak of the state (or mixture) k.

Anarbitrary non-negative definite normalized Hermitian ope-
rator k (T7k = 1) has non-negative eigenvalues %, for which Z k,=1

and corresponding eigenstates with projection operators kw.ﬂThere-
fore k can according to (1.20) be expanded in the form (1.22) and
represents a mixture of its (orthogonal) eigenstates with weights
given by the eigenvalues. .

The statistical operator k,, of a pure state is from the nature of
the case idempotent (k2, = k,,). If on the other hand an idempotent
normalized Hermitian operator k is expanded with respect to
its eigenstates k,, with eigenvalues k,, we get

K=k ="k, Trk=1 Sk,=1, (1.24)
'3

so that one eigenvalue %, is 1, all other are 0. Then k is the projection
operator of the pure state o,

k =Kk, (1.25)

Therefore pure states and only these have idempotent statistical
operators.

Suppose the normalized statistical operator k of an arbitrary
quantum state is expanded in some way into other normalized (but
not necessarily orthogonal) statistical operators k, with non-nega-
tive weights %, ’

k=2krk,; k& >0 (1.26)

This gives
k— K2 =Tk (k,—k) + § T hh(k —k)2  (1.27)

If we expand with respect to pure states k, (k? = k,), (1.27) be-

comes
kK — k2 = 1 3 kk,(k, — k,)2. (1.28)
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This shows that k — k2 is a non-negative definite operator. If the
given state is pure (k? = k) all terms at the right hand side of (1.27)
(which are non-negative definite) must vanish separately. For the
terms of the first sum this means that all states k, with non-vanish-
ing weight (%, > O) must be pure, for the terms of the second sum it
means further that all these states must be identical with each other
and therefore also with the given state (k, = k). The given state is
then said to be indivisible. If the given state is a mixture, k — k2
must be positive definite. Then at least one term at the right hand
side of (1.28) must be different from zero. This means that at least
two different states k, and k, (k, # Kk,;) must have non-vanishinrg
weight (%, > 0, &, > 0). The given state is then said to be divisible.
Thus pure states and only these are indivisible. This has been proved
in a more exact way by von Neumann?).

1.06 Observation. In order to establish the observational meaning
M,, one must accept a definite notion of observation. We deal with
3 different notions:

0,: the classical notion: all observables.a(p,g) can be measured
without fundamental restrictions and without disturbing the system,

0,: the quantum notion (elucidated in 2): measurement of an ob-
servable, which is represented by an operator a, gives as the value
of the observable one of the eigenvalues a, of a and leaves the system
in the corresponding eigenstate k,, (cf. (1.20)); if beforehand the
system was in a state k, the probability of this particular measuring
result is Tr(kk,,).

Suppose for a moment that the statistical description of quantum
mechanics had been proven to be formally of the 1st kind S}, but
with respect to O, properly of the 2nd kind SZ. Then (if any) the
only notion, which could give a proper sense to the formal descrip-
tion, would be

Oy: the utopran motion: the uniquely determined processes are
observable by methods, hitherto unknown, consistent with and
complementary to the methods of 0,.

With respect to quantum theory classical theory is incorrect,
though for many purposes it is quite a suitable approximation (for
lim B — 0). With regard to the utopian conception quantum theory
would be correct, but incomplete. In this a description is called
correct if none of its statements is in contradiction with observa-
tional data. It is called complete if another correct description,
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which leads to observable statements not contained in the given
description, is impossible. This need not imply that all possible
observational statements can be derived from a complete theory.

1.07 The fundamental controversy. Problem § intends to state cer-
tain aspects of the well known controversy about the statistical
character of quantum mechanics in a form fit for a reasonable dis-
cussion. Such a discussion is only possible as long as the theory is
accepted as essentially correct (or rejected and replaced by a more
correct theory). The completeness of the theory may be questioned.

The physical reasonings of Bohr a.o. and the mathematical
proof of von Neumann?) (reproduced in 1.08) have shown
that (with respect to O,) the statistical description of quantum me-
chanics is properly of the 2nd kind S% (problem £,). Yet many of the
opponents did not throw up the sponge, some because they did not
grasp the point, others because they perceived a gap in the reasoning.
It seems that a great many of the escapes (as far as they consider
quantum mechanics as essentially correct) debouch (if anywhere)
into an expectation, which either is already contented with a formal
statistical description of the 1ste kind S}, or moreover hopes to give
such a description a proper sense of type S, by proclaiming the
utopian notion of observation 0,. The examination of this concep-
tion is problem f,.

Even if one did (we could not satisfactorily) succeed in proving
the formal impossibility of type S} (and consequently of type Si,),
many of the opponents would not yet strike the flag. We have al-
ready gone to meet them in trying to formulize some of their most
important objections in a form fit for fruitful discussion. It would be
like flogging a dead horse in trying to do so with all vague objections
they might possibly raise. Actually that is their own task. If they
succeed in doing so, we try to prove the impossibility, they try to
find the realization of their (formal or proper) expectations. Formal
expectations can be realized by a formal construction, proper ones
also require the realization of the type of observations from which
they draw their observational meaning. As soon as the opponents
succeed in finding a realization, we will (formally or properly) be
converted (but not a minute before). As often as we succeed in prov-
ing the impossibility, some of the opponents may formulize (if
anything) new objections for ever. At best they might be compelled
to retreat step by step, they could never be finally vanquished. It
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may also happen that nobody succeeds in going further. Thus
because of running on an infinite track or into a dead one, the con-
troversy may be left undecided. Meanwhile we expect that in an
infinite regression the opponents objections will lose more and more
interest after every retreat.

1.08 von Neumann's proof. The only states with a.meaning
M,, with respect to quantum observations O, are quantum states
(pure states or mixtures). Therefore in a statistical description of the
Ist kind S}, a quantum state should be described as a statistical en-
semble of quantum states. This is impossible for a pure state, because
such a state is indivisible (cf. 1.05). Then the statistical description
of quantum mechanics must (with respect to quantum observations)
be of the 2nd kind S%,. This is in our present mode of expression the
point of von Neumann’s proof?). It should be noted that in
1.05 the admission of non-negative probabilities only (non-negative
weights and non-negative definite statistical operators) is an essen-
tial (and natural) feature of the proof.

Now before going into the details of problem B,, we first turn to
problem a (we need oy for B,).

1.09 Correspondence alp,q) <— a. In passing from classical to
quantum mechanics, the coordinate and momentum ¢ and 9, for

which
(pg) =1, (1.29)

are replaced by coordinate and momentum operators q and p, for
which

(pa] =1 (i-e- Pq—qp = —f‘—) (1.30)

$ and ¢ are the generating elements of the commutative ring of clas-
sical quantities a(g,p), p and q the generating elements of the
non-commutative ring of quantum operators a. The non-commuta-
bility (1.30) of p and q entails that the quantities a(p,g) cannot
unambiguously be replaced by a(p,q). The ambiguity is of the order
of . The classical quantities a($,g) can be regarded as approxima-
tions to the quantum operators a for lim % — 0. The former can
serve as guides to get on the track of the latter. Problem «, asks for
arule of correspondence a($,9) — a, by which the quantum operators
a can be uniquely determined from the classical quantities a(p,g)-
In practical problems no fundamental difficulties seem to occur
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in finding the appropriate form of the required operators a. This
suggests the problem (not further discussed here) whether all or only
a certain simple class of operators a occur in quantum mechanics.

Suppose for a moment that all relevant quantum operators a had
been fixed in one or other way. Then one might ask for a rule
a — a(p,q), by which the corresponding classical quantities a(p, q)
are uniquely determined (problem «;). Problem o, would be easily
solved in zero order of %, ambiguities might arise in higher order.
Now (with respect to 0,) the classical quantities have only a meaning
as approximations to the quantum operators for Jim % — 0. There-
fore, whereas in zero order of % it is hardly a problem, in higher order
problem o, has no observational meaning M,, (with respect to O,).

Problems «; and «, could be combined into problem «3, asking for
a rule of one-to-one correspondence a(p,q) <— a between the clas-
sical quantities a(p,q) and the quantum operators a. Beyond the
trivial zero order stage in %, problem a3 can (with respect to 0,) only
have an observational meaning M, as a guiding principle for de-
tecting the appropriate form of the quantum operators (i.e. as pro-
blem «;). A formal solution of problem w; has been proposed by
W e y12) (cf. 4.03). We incidentally come back to problem «3in 1.18.

1.10 Quantum observables. In this section a will not denote a clas-
sical quantity a(p,q), but it will stand as a symbol for the observable,
which (with regard to O,) is represented by the quantum operator a.
According to 0, two or more observables 4, b,. . . . can be simultane-
ously measured or not, according as the corresponding operators
a, b,.... respectively do or do not commute i.e. as they have all
eigenstates in common or not. Problem a4 deals with the (one-to-one)
correspondence a4 <—> a between the symbols a and the operators a.
Problem «, has no sense as long as the symbols @ are undefined. They
may, however, be implicitely defined just by putting a rule of cor-
respondence. (When the symbols # are identified with the classical
quantities a(p,q), problem «, becomes identical with problem ej).
Von Neumann?) has proposed the rules

if a «— a, then f(a) «<— f(a), I
ifa <> aand b «<— b,thena + b«—a -+ b, II
f(a) is defined as the operator, which has the same eigenstates as a

with eigenvalues f(a,), where a, are those of a. Then I seems to be

obvious. The observable f(a) can be measured simultaneously with
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a, its value'is f(a,), where a, is that of a. ‘When a and b commute,
a -- b has the same eigenstates as a and b with eigenvalues @y + by,
where a, and b, are those of a and b. Then II seems also-to be ob-
vious. @ 4+ b can be measured simultaneously with a and b, its value
is @, + b,, where 4, and b, are the values of 4 and b. Whénaand b
do not commute, II is proposed with some hesitation. Because ac-
cording to 0, the probability of finding-a value 4, for 2 in a state k is
Tr(kk,,) (and because of 1.20)), the expectation value (average
value) of a in this state is’ ' -

| Exla) = 2 Tr(kky)a, = Tr(ka) (1.31)

and similar for b. If one requires that for a certain pair of observables
a and b always

Ex(a + b) = Ex(a) + Ex(b), _ - (1.32)

one must, because of . ,
: Tr(k(a 4 b)) = Tr(ka) + Tr(kb), (1.33)
have that : :
Ex(a + b) = Tr(k(a + b)). (1.34)

Because this has to hold for all states k,  and b have to satisfy rule
II. When II is given up for ‘certain pairs 4,b, the additivity of the
expectation values of these pairs has also to be given up.

In 4.01 it will be shown that; if I and II shall be generally valid,
the symbols ¢ have to be isomorphic with the operators a. But then
there is no reason to introduce the former, their task (if any) can
be left to the latter. Accordingly for the sake of brev1ty we shall
henceforth speak of the (quantum) observable a.

~'When on the other hand, the symbols-a are intended as real com-
muting quantities, the general validity of I and II cannot be main-
tained. As long as the symbols @ are not further defined, problem
oy comes to searching for a one-to-one correspondence @ <— a
between the commutative ring of real symbols @ and the non-com-
mutativering of Hermitian operators a. There may be no, oneor
more solutions. After the pleas for I and for II, one might be in-
clined to maintain 1 and to restrict II. In 1.13 we meet with a par-
ticular case (problem o) for which I has to be maintained and there-
fore I has to be restricted. Because we are further exclusively in-
terested in problem ag, we will not examine the possibility of solu-
tions for which I1 is restricted.
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1.11 Hidden parameters. We try to trace the conditions for the
assumption that the statistical description of quantum mechanics is
(at least formally) of the 1st kind S* (problem B). A statistical des-
cription S! must be obtained by statistical averaging over uniquely
determined processes. The averaging must be described by inte-
gration or summation over a statistical distribution with respect to
certain parameters. Unless they are further specified, we denote all
parameters by a single symbol § and integration (including a pos-
sible density function) and summation over continuous and discrete
parameters by / d€. Parameters, which are in no way observable with
respect to O, are called hidden parameters. (We exclude their oc-
curence in 1.15). Asa pure superstate we define a state for which all
parameters (inclusive the hidden ones) have a definite value.

1.12 Distributions. A quantum state must be described as an en-
semble of pure superstates. The statistical operator k of the quan-
tum state must correspond to at least one (non-negative definite)
distribution function k(E) for the superstates. For each definite
value of £ all k() must have definite values and therefore must
commute. k(£) must be normalized by fdE (€} = 1, so that with (1.23)

Trk = [dE R(E). (1.35)
Further the correspondence must be linear
if k; < k() and ky <— ky(E), then K, 4k, <— £ (8) +A,(E). (1.36)

The observable (with respect to O,) represented by the statistical
operator k,, of a pure quantum state has the eigenvalue 1 in this
quantum state and O in all orthogonal states. The probability of
measuring in a system, which is originally in a quantum state k,
the value 1 (and leaving the system in the pure quantum state k)
is Tr(kk,,). In a description of type S this probability must be in-
terpreted as the probability that any superstate belonging to the
ensemble with distribution function k(§) corresponding to k also
belongs to the ensemble with distribution function k,,(€) corres-
ponding to k,,. The latter probability is / dt k(E)k,,(E). Therefore
the correspondence k <—> k(£) must be so that always

Tr(kiky) = f d€ By(B)Ea(E)- (1.37)

For two orthogonal states &, and %, this expression is zero, which
guarantees that the distribution functions %(§) and k,(§) do not
overlap, provided they are non-negative definite.
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1.13 Superquantities. The expectation value of the observable a
in the quantum state k is because of (1.31) and (1.37) -

E Tr(ky)a = =/ % HERuuE)a (1.38)

The right hand member of (1.38) can be interpreted as the average
value of a quantity a(§) = Z a,k,,,(€) (defined as the superquantity
" ;

corresponding to the observable a) in the ensemble of superstates
with distribution function %(£). This is exactly the way in which the
expectation value should appear in a description of type S!. Thus
with the correspondence a <-— (&) (which is a linear generalization
of k «—— k(£)) the expectation value of a in the state k can be writ-
ten

Tr(ka) = [ d& k(%) a(§). (1.39)

Comparison with (1.35) shows that the unit operator 1 has to cor-
respond to the unit quantity 1

1« 1. 111

By a further linear generalization of (1.39) we see that the cor-
respondence a < a(f) must obey the rule Y

if a <— a(f) and b «— b(E), then Tr(ab) = fdE a(§) b(E). IV

Rule II is a consequence of rule IV (the necessity of IT is evident
from the beginning, because average of sum = sum of averages).
Therefore rule I cannot be satisfied without restrictions.

Problem «5 is how to establish the correspondence a <— a(£).
o5 is, like o3, a special case of ay.

1.14 Equations of motion. The equations of motion for the quan-
tum states must be obtained from the equations of motion for the
superstates. The former are determined by the Hamiltonian
operator H (which may depend on time #) of the system according
to the equation of motion of the statistical operator k

dk

= —[HK] (1.40)

(which is equivalent to the Schrédinger equation

B oo :
T e
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for pure quantum states). Because the correspondence k «— k(&)

1s linear, we have

dk Adk( )
WHT— (1.41)

(1.40) can be integrated into

¢
K(f) = e hfdt H(t) k(1) e %fdt'ﬂ(t') (1.42)
. :
(which is equivalent to ¢(f) = e "of “ H(mcp(to) for pure quantum
states). If the superquantity corresponding to the bracket expres-
sion [a,b] is written ((a(E), b(£))) (the former and consequently also
the latter bracket expression is antisymmetrical), the equation of
motion of the distribution function k() reads

k)

e = — (HE), k). (149

Because
dit Tr(ka) — Tr(— [HK]a+ k%) — Tr(k([H,a] n Z—?)) (1.44)

and correspondingly

2 [ e ey ate) = [ (— (e, ren) a@ + 4@ a“‘5)

= f dE k(E) (((H(E), a®)) + %) , (1.45)

the dynamical time dependence can be shifted from the wave func-

tions ¢ and the statistical operators k (Schrodinger repre-

sentation) and the distribution functions k(£) to the operators a

(Heisenberg representation) and the superquantities a(£).
Instead of (1.40), (1.43) we then get

%=%_j‘+ (H, a], ' (1.46)
28 _ 20 1 (@), @), (1.47)

For those parameters £, which correspond to observable quantities
(with respect to O,) (1.47) must be valid and reads

ag ok
=t (HE®), ). (1.48)

Physica X1II 27
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The equations of motion for the hidden parameters may be of a dif-
ferent form. When all parameters (inclusive the hidden ones) are
continuous, their equations of motion have to satisfy the condition
that when inserted in

da(®) _ 2a(t)
dt ot

2a(E) dt
0% dt

+ (1.49)

(where the last term stands symbolically for a sum over all separate
parameters £), they must give (1.47).

We may summarize that, in order to give a statistical description
of the Ist kind, one would have to determine (only formally for
type S}, also experimentally for type S}) the parameters £ (inclusive
the hidden ones) and the density function, the (one-to-one or one-to-
many) correspondence a <— a(§) (problem «g) and the equations
of motion for the hidden parameters (if there are any such), all
with regard to the imposed conditions.

1.15 Correspondence a <— a(£). Because a non-Hermitian
operator a (with adjoint a?) can be written as a complex linear com-
bination of Hermitian operators

a=1}(a-+al) —|~—21—1.-(z'a—ia'f),

the generalization of the correspondence a <— a(£) to non-Her-
mitian operatorsis uniquely determined. Now take the non-He r-
mitian transition operators k,,, which according to (1.13), (1.14)
form a complete orthonormal system in the ring of operators a.
For the corresponding functions %,,(§) we get corresponding to
(1.11), (1.12); (1.13), (1.14) and (1.15) (and using III, IV and (1.03))
the relations

JAE By (E) = 3, (1.50)
%kw(i) =1; (1.51)

S AE RE(E) Ry (E) = 8y 8y (1.52)
Evkp.v(g) kﬁv(g’) = 8(‘5 - E') (153)

(8(§ — &) stands for a product of 3-symbols for all parameters € and
the inverse of the density function) and

a(g) = Eyam ku(8) with o, = [dEEL(E) a(f).  (1.54)
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(the a,, are the same as in (1.15)). These relations show, that the
functions a(£) can be regarded as elements of a (generalized)
Hilbert space, in which the k() form a complete orthonormal
system; (1.52) expresses the orthonormality, (1.53) the completeness.

We now show that the correspondence a <—> a(£) has to be a
one-to-one correspondence. Suppose for a moment there are opera-
tors k,, to which there correspond more than one functions &,,(&),
which we distinguish by an index p, k,, <— &, ,(€). Then the ex-

pression
z de kp.v p(E-') ky.v ' (E) k,u.’v’; p"(gl)

evaluated with (1 52 ) gives &, ,+(8), evaluated with (1.53) it gives
kyy; (&) Therefore &,,, +(€") and k,,, ,(£') have to be identical. To
each operator a and only to this one there has to correspond one and
only one superquantity a(£). As a consequence the superquantities
a(E) must depend on the same number of parameters (at least if
they are not too bizarre) as the operators a, i.e. on twice as many as
the wave functions ¢.

Thus to each (normalizable) real function a(£) and only to this one
there corresponds one and only one Her mitian operator a, which
represents an observable quantity (with respect to O;). In other
words every real function a(£) is a suparquantity. Because this also
holds for the (real and imaginary parts of the) parameters £ them-
selves, none of them can be hidden in the sense defined above. (An
observable quantity may occasionally be inobservable in a measur-
ing device adepted to an incommensurable quantity; in this sense a
parameter may occasionally be hidden). In particular all parameters
must obey (1.48).

Comparing (1.15) and (1.54) we see that the correspondence
a <—> a(k) can be expressed by

" a(t) = Tr(m(®)a), a =/ dEm(E)a(), (1.55)
w1 .
m(E) = 2k, B5(0); m(E) = m(E). (1.56)

The Hermitian transformation nucleus m(£) satisfies the rela-
tions

Trm(E) = 1, (1.57)

JdE m( ) = (1.58)

Tr(m(E) mE)) = (E — &), (1.59)

SdE Tr(m() a) Tr(m(&) b) = Tr( b) (for everyaandb)  (1.60)
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(1.60) is equivalent to
JdE m(E) Tr(m(E) a) = a (for every a).

(1.59) expresses that m(g) is orthonormal with respect to the ring of
operators a, complete with respect to the ring of superquantities
a(E); (1.60) expresses the crossed properties.

If, on the other hand, a Hermitian transformation nucleus
m(£) satisfies the conditions (1.57), (1.58); (1.59), (1.60), the corres-
pondence (1.55) satisfies III and IV. We may either choose a com-
plete orthonormal system of k,,, satisfying (1.11), (1.12); (1.13),
(1.14) and determine the corresponding system of £,,,(£), which then
satisfy (1.50), (1.51); (1.52), (1.53), or we choose the latter system
and determine the former one. In both cases m(£) can be expanded
according to (1.56).

1.16 Uniqueness. Now let us see whether the correspondence
a <> a(£) is uniquely determined by the conditions III and IV.
Suppose we have two different nuclei m’(£) and m" (£), depending
on the same parameter ¢ and both satisfying (1.57), (1.58); (1.59),
(1.60). When we choose for both the same complete orthonormal
system of &,,(§) satisfying (1.50), (1.51); (1.52), (1.53), we find two
corresponding systems of k,, and kj,, which each satisfy (1.11),
(1.12); (1.13), (1.14). Therefore the latter systems can be connected
by a unitary transformation

k,, =uk,ut, uwu' =1; ki, =u'k, u (1.61)

(expressed analoguous to (1.03) u can be written as X ¢, ¢,f). The

same unitary transformation connects the nuclei m"(‘i) and m”(§)
and also the statistical operators k’ and k'’ corresponding to the
same distribution function %(£) and the operators a’ and a’’ cor-
responding to the same superquantity 4(£). Then the single and
double dashed representations are isomorphous and in quantum
mechanics regarded as equivalent. Therefore, when the parameters
& have been chosen, the correspondence a <— a() (if there is any
correspondence) can be considered as unique. -

When we choose one set of parameters £ and another set of para-
meters v, the nuclei m(£) and m(y) (if there are any nuclei) can be
considered as uniquely determined. When we take a complete ortho-
normal system of k,, satisfying (1.11), (1.12); (1.13), (1.14), we find
two corresponding. systems of %,,() and &,(n), which each satisfy
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(1.50), (1.51); (1.52), (1.53). Then it follows that the superquantities
a’'(£) and a'’(n), corresponding to the same operator a are connected

by
a'(8) = fdnvE;m)a"(n); a"(n) =SdEv(Ema'(E), (1.62)
where the transformation nucleus
v(E; M) =Eik;w(a) Eam); vE;n) = v*E;n) (1.63)

satisfies '
JSaEwE;m) =[dnv(E; ) = 1; (1.64)
SdnvE;n)v(E;m) =3E—E), [AEv(E; ) vE; ') =3(n—m"). (1.65)

The rings of a’(E) and of a’(x) are not necessarily isomorphous.
When they are, we must have

Jldn’'dn""v(&; n)o(E; n")a" ()b (") = [ dn v(E; n)a” (n)b"'(n) (1.66)

for every a’'(x) and &’'(y), which requires

v(€; ) v(E; ") = v(E; %) (0" — ") (1.67)
and similarly
v(€'s M) w5 m) = v(E'; M) 3E —E). (1.68)
The solutions of (1.67) and (1.68) have the form
v(€; M) = 3(n(€) — 7)) (1.69)
and
v(€;n) = 8(E —E (), (1.70)

where %(£) and £(») are single valued functions. Because (1.69) and
(1.70) have to be identical, n(E) and &(n) have to be inverse to each
other with unit functional determinant

o) | _ | 2E) ' =1 (1.71)

EGERED]

(it should be remembered that we symbolically write £ or v for what
might be a whole set of parameters £ or v). With- (1.69), (1.70) we
get for (1.62)

@'(E) = a”"(n(E)); a’(n) = a'(n(8))- (1.72)

This shows that the transformation between two isomorphous re-
presentations a'(E) and a’/(») can be regarded as merely a transform-
ation of the parameters. It further follows that, if the dynamical
conditions for (1.49) are fulfilled by one of these representations,
they are also fulfilled by the other one. Therefore isomorphous re-
presentations can be regarded as equivalent.
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When the solution »(£ ;%) of (1.64), (1.65) is not of the form (1.69),
(1.70), the representations a'(E) and a'’(x) are non-isomorphous.

1.17 Parameters. In 4.03 we derive a correspondence, satisfying
III and IV, in which the two independent parameters (denoted by
¢ and ¢), which run continuously between — oo and + oo, corres-
pond to the operators p and q. This choice of parameters might seem
the most satisfactory one, as it is adapted to the fundamental part
played by the momentum and the coordinate. (By the way, because
momentum and coordinate cannot simultaneously be measured, p
may be regarded as occasionally hidden in a coordinate measure-
ment, ¢ similarly in a momentum measurement — or in a somewhat
different conception p may be regarded as occasionally hidden in
g-representation, g in p-representation; both p and ¢ may be regard-
ed as occasionally partially hidden in other measurements or re-
presentations).

In 1.16 we have seen that for each choice of a complete orthonor-
mal system of &,,(p,q), satisfying (1.50), (1.51); (1.52), (1.53), there
must for every other representation with parameters £ bea similar
system of k,,(§) with the same set of indices p,v. That makes us ex-
pect that when £ stands for a set of not too bizarre continuous para-
meters, the latter can like $ and g be represented by two independent
real parameters 7 and s. We do not examine the validity of this ex-
pectation (which would be very difficult).

1.18 Bracket expressions. When these parameters » and s are also
independent of time, the consistency relation for (1.47), (1.48) and
(1.49) reads
oa(r,s)

0s

(for every a(r,s)).

When the superquantities H(r,s) corresponding to the Hamil-
tonian operators H are not restricted to functions of a too
special type, (1.73) requires (using the antisymmetry properties

((r.8)) = — ((s.7)); (7)) = ((s,8)) = 0)
((alr,s), b(r,5)))=((r,5))(a(r,s), b(r,s)) (for every a(r,s) and &(r,s)), (1.74)
with the Poisson brackets (similar to (1.01))

: __0a(r,s) ab(r,s). 0a(ns) 0b(z,s)
(al.9), blr.5)) = or os  os or

((H(7,s), a(r,s))) = (H(7,s), s)} (1.73)

(1.75)
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For the superquantities $(r;s) and ¢(r,s) corresponding to p and q
we get because of (1.30)

((p(r,9), g(r,8))) = ((r.5)) (p(r.9), qlr,s)) = 1. (1.76)
Therefore (1.74) can also be written

_ (alr.9), blr,9))
((alr,s), b(r,s))) = B, qrs)’ (1.77)
This means that the correspondence a < a(r,s) has to szitisfy the
rule

if a<— a(rs),b<— brs) and p < p(r,5), q <> ¢(r,5),

(alr,s), blr,s))
(P(7.5), qlr,8)) "

The analoguous derivation for the parameters p and ¢ gives
(independent of our unproved expectation about the parameters
7 and s) the condition

if a <— a(p,g)andb <« b(p,g), then [a,b] <« (al(p,g), b(p.9)).V,

For this choice of parameters problem ag of the correspondence
between the superquantities a(p,q) and the quantum operators a
seems very similar to problem «3 of the correspondence between the
classical quantities a(p,q) and the quantum operators a, by which
they are replaced in the procedure of quantization. The fact that in
this procedure the P oisson bracketsin the equations of motion are
replaced by operator brackets might suggest rule V' in problem o3.
If a solution of «; satisfying rules III, IV and V'’ could be found, the
classical description could be regarded as the description of the uni-
quely determined processes in a statistical description of the lst
kind S!. The utopian notion 0,, intended to proclaim these processes
as observable, would coincide with the classical notion O,. This would
not (as it might seem) exactly mean a return towards the old classi-
cal theory, which was regarded as incorrect (with respect to 0, and
therefore also with respect to O,, which regards O, as correct,
though incomplete), because one would have to deal with peculiar
distributions of classical systems. These distributions would have to
be responsible for quantization.

But such a solution cannot be found. In 4.02 we show that V' is
self contradictory (except for lim i — 0). Because V' already fails

then [a,b] \4
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for operators of occuring types, a restriction of the admitted opera-
tors could not help. Therefore a solution of problem ag with 4 and ¢
as parameters, which satisfies the dynamical conditions, is impos-
sible, just as a solution of a3, which describes the quantization of the
classical equations of motion by the same rule as the quantization of
the classical observables.

This is in point of fact all we have been able to prove. Though
and ¢ may seem the most satisfactory choice of parameters in a
description of type S!, the formal disproof of just this description
does not involve the impossibility of any description of type S}. A
complete proof of the impossibility of a description of type S} does not
seem simple and neither does the construction of such a description.

For a pair of continuous time independent parameters 7 and s
condition V would have to be satisfied. When the commutator of
r and s commutes with » and s, V is self contradictory just like V',
It is doubtful whether V can be consistent in other cases. A pair of
continuous time dependent parameters 7(f) and s(f) must at every
time ¢ be unique single-valued functions of the initial values 7(¢,) and
s(fo) at an arbitrary time #,. Then instead of the time dependent 7(¢)
and s(¢) the time independent 7(#;) and s(f,) can serve as parameters.
Therefore, if our expectation about continuous parameters is justi-
fied, the difficulty for such parameters lies mainly in the consistency
of V. It is difficult to see how parameters with entirely or partially
discrete values or of too bizarre continuous type could give a satis-
factory description of type S'.

There are still more difficulties for a description S' as we will see
in a moment.

1.19 Quasi-statistical description. Whereas it is doubtful whether
the dynamical condition V can be fulfilled, conditions III and IV can
be satisfied without much difficulties. With a solution of the latter
conditions only, one can construct a quasi-statistical description of
the 1st kind Q!', which looks very similar to a formal statistical
description of the Ist kind S}, but in general does not satisfy the
dynamical (and, as we will see in a moment, other necessary) con-
ditions. A solution of IIT and IV gives according to (1.39) the correct
average values. But the real distribution function £() corresponding
toa Hermitian non-negative definite statistical operator k of a
quantum state (pure state or mixture) is in general not non-negative
definite.
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The difficulty of interpreting negative probabilities might perhaps
be surmountable, at least in formal sense M. Meanwhile, according
to the remark following (1.37), it is no longer guaranteed, that the
distribution functions %,(£) and %,(E) corresponding to orthogonal
quantum states k; and k;, do not overlap. And overlapping of such
distribution functions it not allowed by the notion of quantum ob-
servability O,. We see this in the following way. Suppose we subject
the system repeatedly to a measurement, which distinguishes be-
tween the states %; and %, (and other orthogonal states). When after
one measurement the system is left in the state %, the probability
of finding it after a repeated measurement in the state %, is O
because of (1.37). In the quantum mechanical interpretation this
means absolute certainty of not finding the state %,. In the quasi-
statistical interpretation the zero value for the right hand member
of (1.37) results from integration of positive and negative probabili-
ties over the region of overlapping. Integration over a statistical
distribution refers to a great number of measurements. In a proper
statistical description of the 1st kind S the absolute certainty of not
finding the state k,, even in a single measurement, can only be esta-
blished if no superstate occurring in the ensemble k,(£) can also occur
in the ensemble &,(£), i.e. if 2;(E) and %,(E) do not overlap.

Therefore in order to find a statistical description of type S}, one
would have to satisfy not only conditions II, IV and V (or another
dynamical condition), but also the condition that the distribution
functions of quantum states are non-negative definite, or at least
that the distribution functions of orthogonal states do not overlap.
This task does not look very promizing.

We incidentally remark that in any representation of type Q!
either of the two parameters can be treated as occasionally hidden.
Already after integration over this one parameter we get the quan-
tum mechanical formalism in the representation of the other para-
meter. In particular no negative probabilities are left.

In 4.03 we derive a particular solution (W e y I's correspondence)
of Il and IV with parameters $ and g and in 5 we discuss the quasi-
statistical description Q! to which it leads. We do so not only for the
sake of curiosity, but also because it is very instructive to those
opponents in the fundamental controversy, who have a description
of type S! (similar to that of classical statistical mechanics) vaguely
in mind. A description of type Q! might be the utmost (though
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rather poor) realization of such foggy ideas. (The mysterious hidden
parameters then turn out as ordinary, occasionally inobservable-
observables). Such a description clearly shows the obstacles (equa,
tions of motion; non-negative probabilities or non-overlapping
distributions) at which all such conceptions may be expected to
break down. .

So far the general line of reasoning. Before dealing further with
correspondence in 4, for which we need the operator relations of 3,
we Teview in 2 the measuring process in terms of the operator re-
presentation.

2. The measuring process.

2.01 Deviation. Quite apart from the interpretation of 1.10, the
expectation value of a quantum observable a in a quantum state k
is given by (1.31) or

' Ex(k; a) = Tr(ka). (2.01)
Further the deviation of this observable in this state is defined by
Dev(k; a) = Ex(k; (a— 1Ex(k; a))?) = Tr(k(a — 177 (ka))?) =
= Tr(ka?) — (Tr(ka))2. (2.02)
First we review some consequences of this definition, detached of
any interpretation.

It can be seen from the inner members of (2.02) that the deviation

is non-negative. We form the transition operators k,, (1.03) of the

complete system of eigenfunctions ¢, of a with eigenvalues a,
and expand k according to (1.15) as

k = 2, k,, with %, = Tr(k,, k). (2.03)
784
The normalization of k (Trk = 1) gives with (1.11)
Doy, = 1. . (2.04)

s
Then (2.02) gives

Dev(k;a) = E.xm‘ aZ — (E Ko B)? = %E;x#“xw (4, — a,)%. (2.05)
If k is a pure state with wave function ¢, we have

*pp = T7(K,, K) = | ol of% (2.06)

%y, 18 then non-negative and (2.05) can only be zero, if  is a linear

combination of eigenfunctions ¢, all with the same eigenvalue a4,
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If the normalized quantum state k (pure state or mixture) can be
written as a mixture of other normalized states k, with weights %,

k=ZXkk,; k >0, Tk =1, (2.07)

(2.02) gives
Dev(k;a) = X k, Tr(k,a?) — (Z k,Tr(k,a))?

= Xk, Dev(k,;a) + } Z k, k(Ex(k,;a) — Ex(k,;a))%.  (2.08)

The deviation of a in the state K is therefore only zero, if all occuring
states k, (%, > O) in the mixture give zero deviation and the same
expectation value for a. Taking for the k, pure states (the eigen-
states of k), we see that a is only deviationless in the state k, if the
latter is a pure linear combination or a mixture of linear combina-
tions of eigenstates of a all with the same eigenvalue.

Because one can easily find two non-degenerate quantum opera-
tors (i.e. quantum operators with no more than one eigenstate for
each eigenvalue), which have no eigenstates in common (e.g. p and
q), there can be no quantum states in which all observables have
zero deviation (deviationless states) ). Here might seem to lie the
reason why the observational statements of quantum mechanics
are in general of statistical character. No doubt there is some con-
nection, but this rapid conclusion should not be taken too rashly,
because it implies an interpretation of the deviation, which is not
entirely justified. Let us turn to this interpretation.

In a statistical description of the Ist kind S! the deviation of a
quantity a is defined by

Dev(a) = Ex((a — Ex(a))?) = Ex(a®) — (Ex(a))%  (2.09)

In an ensemble, in which this deviation is zero, 4 must have the
same value in all samples. Then it follows that for every function f(a)

Ex(f(a)) = [(Ex(a)). (2.10)

Whereas in general a has a proper value only in a sample and in an
ensemble only an average value (expectation value), one can speak
of the proper value of  in an ensemble if the deviation is zero.

In quantum mechanics it is not entirely clear what is meant by
the square or another function of an observable. In order to discuss
things, let us have recourse for a moment to the notion of 1.10 and
let a stand for the observable represented by a(e¢ <— a; problem
ag). Then (2.09) is only identical with (2.02) for all states k if



428 H. J. GROENEWOLD

a* «— a% Further we have seen that a state k, in which (2.02) is
zero, must be a (mixture of) linear combination(s) of eigenstates of a
all with the same eigenvalue a,. In these states the eigenvalue of
f(a) is f(a,) and Dev(k; f(a)) = 0. We write the operator, which re-
presents f(a) as f(a). If (2.10) shall be valid in a state k, in which
(2.02) is zero, we must have

Tr(kf(a)) = [(Tr(ka)) = f(a,) = Tr(k /(a)); Dev(k; f(@)) = 0. (2.11)

The second part is a special case of the first. The first part requires
that the matrix elements of f(a) with respect to the eigenstates of a
with the same eigenvalue a, have to be the same as those of f(a)
(i.e. equal to f(a,)), the second part that the matrix elements of f(a)
with respect to the eigenstates of a with different eigenvalues a,
are zero like those of f(a). This means f(a) = f(a) so that I has to
be satisfied. For every a, for which I is accepted, (2.10) always holds
in states in which a has zero deviation. For those a, for which I is
rejected, (2.10) breaks down even in such states. In the latter
case it should be kept in mind that if we speak about a,, as the proper
value of the observable a in such a state, this is actually more or
less misleading.

Thus we could give a meaning to the deviation, as soon as we could
give a meaning to problem «, (or the special case «g). This meaning
would only agree with the one which is usually prematurely ac-
cepted, as long as rule I would hold. From the quantummechanical
point of view O, there is no need for such a meaning. Meanwhile
from the formal point of view the definiteness of the expression (2.02)
remains of interest.

2.02 The measuring device'). The aim of an (ideal) measuring
process is to infer (the most complete) data of the object system from
the data of the observational perception. Object system and ob-
server interact by intervention of a chain of systems, which form
the measuring instrument. This chain can be cut into two parts.
The first part (which may be empty) can be added to the object
system, the last part to the observer. Extended object system and
extended observer interact directly. The (extended) object system
is regarded as a physical system. It is described by a physical treat-
ment. The (extended) observer is unsusceptible of a physical treat-
ment. Its part consists in an act, which must be stated without
further analysis. The result of the measuring process should be in-
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dependent of the place of the cut in the measuring system, provided
the first part is entirely accessible to a physical treatment.

We make a simplified model of the extended object system in
which all partaking systems have one degree of freedom. The original
object system is denoted by 1, the successive systems of the measur-
ing instrument before the cut by 2,3,....n. Every pair of adjacent

systems/— land ! (/ = 2,3,....n) is coupled during a time interval
(f2—4, t_3). The time intervals must be ordered so, that
lop+1 =ty (2.12)

For the sake of simplicity we impose the condition that different time
intervals do not overlap
by >ty (2.13)

Then the couplings between the various pairs of adjacent systems
can successively be treated separately.

In 1 we choose a complete system of orthonormal wave functions
14 (). The time dependence can be described with the help of a
Hermitian operator H}(t) according to

2 2 i) = 01,0, (219

1 is coupled with 2 during the time interval (f,¢;). This means that
during this time interval the Hamiltonian H,() of the com-
bined systems 1 and 2 cannot be split up into the sum of two
Hamiltonians H(!) and H,(f) of the separate systems. The
system 2 is supposed to be initially in the pure quantum state qa(f).

We impose two conditions on H,(¢) and ¢y(£,). The first condition
is that H,,(¢f) — H(f) must be diagonal with respect to the system

of 1,() , ,
(Hiz(t) — HY(#)91,(0) = 01,()Gpalt). (2.15)

G2 1s an operator with respect to the variables of 2 (g-number), but
an ordinary number with respect to the variables of 1 (c-number).

When 1 is initially in the pure quantum state ¢j,(f), the final
state of 1 and 2 together is because of the wave equation

h 0
T ®12(f) = — Hyp(t) @12(t) (2.16)

given by
t

-5 fatHa , i fuc ®
€ :.f P1ulfo)P20(fo) = P1ulty) € ”:’,/ w P20(to)- (2.17)
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With arbitrary chosen functions g,(¢) and

i
~ 3 [arguw)
onult) = ol 3L WY

.
—— [ dt(—gut) +Gpat)
(FZp.(t) =8 hi{ # ur

(2.17) becomes

elte) (o <t<?), (2.18)

P1(t) P2ulty)- (2.19)

The second condition, which we impose on H5(f) and ¢y(f) is that
the (already normalized) ¢, () must be orthogonal

4
7 J 9 (—ep®) +Gpu2(t)
(Pap.(tl)(sz(tl) = CPEO(tO) eh;{ (—epl u2(4) .

o h
~ = [ at—ey (1) +Gy2(t))
- € ht{ * P20(fo) = - (2.20)

The system of ¢,,(f) need not be complete.

For ¢ > ¢, after the coupling has been dissolved, 1 and 2 have
separate Hamiltonian operators H,(f) and H,(f). The ortho-
normal functions ¢y,(¢;) and ¢,,(t;) then transform into the ortho-
normal functions

Lt
—5 Jarmw)

eult) =€ *y P1ut1)
and ’ (2:21)
Lt
— 2 [ar B9
eault) =€ h{ Pau(t).
The complete wave function (2.19) transforms into

The succeeding pairs of adjacent systems are coupled analogously.
The complete wave function of the first m systems after the last
coupling becomes, in the same way as (2.22),

<Pll,l.(t)chp,(t) . '(Pmy.(t) (t2m—3 << t?.m—Z)' (223)

More general 1 can, instead of being in a pure state ,(f), be
initially in a state with statistical operator k;(f,), which then can
be expanded according to

k, (%) =F2v7 Xiyu(fo) Kupw(to) With ey, (f0) = Tr (K (fo) ks (fo)). (2.24)
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The statistical operator of the first m systems after the last interac-
tion then becomes with (2.23)

Ki..m(?) =E’xlvy(t0)k1pv(t)k2pv(t) .- -kmp.v(t) (toms<t< t‘Zm—Z)' (2.25)

The interactions have affected the states of the partaking systems
and established a correlation between them (entanglement).

2.03 Infringed states. When after the interaction the correlation
between the state of an arbitrary system /(1 <! < m) and the state
of the other m — 1 of the first m systems is ignored, the latter state
can irrespective of the former state according to (2.25) and (1.11) be
described by the statistical operator

Kz g—1) g+ 1..m() = T7 Kia m(?)
= E xl/_;p(to)klp,p.(t) .. ‘k(l—l)pp.(t)k(l+l)p,p.(t) . ‘kmp.y,(t) (2.26)

(T7, denotes the trace with respect to the variables of /). More ge-
neral the state of a selected series Iy, l,... L (1 <L <l < ... [, <m)
out of the chain of the first m systems irrespective of the state of the
other systems is described by the statistical operator

Ky .50 = E %1 (f0) K (K () - - Kipu(8) > t—a).  (2.27)

(2.27) is the statistical operator of a mixture of pure quantum states
Prp B) @1 (8) -« - (8) With weights 5, (f). The ignorance of the
correlation with other systems has also partially destroyed the cor-
relation between the selected systems themselves. According to the
remaining correlation only individual pure quantum states ¢y,(f)
of the systems [, l,,. . ./, with the same Greek index occur together.
We denote a state of a group of systems, which has come about
by interaction with other, afterwards ignored, systems as an infring-
ed state. ((2.25) is the entangled state (2.27) the infringed state).

We consider two particular cases of infringed states. First we put
m = n and let the selected series consist of the systems 1 and # only.
(2.27) then becomes

kln(t) = Exlpy.(tO)klp.p(t)knpp.(t) (t > t2n—3)' (228)

The correlation between 1 and », which is left in this infringed state,
justifies the inference that when for # the pure quantum state
®nyu(?) is realized, the corresponding pure quantum state ¢y, (¢) (with
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the same p) is realized for 1. With this inference the correlation is
completely exhausted.

In the second place we put m = n 4 1 (supposing that the inter-
action between n and » + 1, which crosses the cut, is still accessible
to a physical treatment) and select the systems 1,2,. . .#n. Then (2.27)
gives

Kpz.a(t) = Exlw(to)klw(t)kzw(t). oK) (8> ta). (2.29)

(2.29) determines the infringed state in which the extended object
system is left after the interaction with the observer, if the state of
the observer is afterwards ignored.

If in (2.29) we put n = 1, we get

k(t) = %xlyp.(to)kl;.m(t) t >t), (2.30)

which determines the infringed state of the original object system af-
ter the interaction with the measuring instrument, irrespective of
the final state of the latter (and of the observer).

2.04 The measurement conclusion. When the original object system
and observer are connected by a measuring instrument, which con-
sists of an unramified chain of one or more interacting systems, it
follows from (2.28) that the conclusion about the original object
system, which the observer can infer from his final perception,
certainly cannot go further than to indicate which of the pure
quantum states ¢y,(¢) is realized. According to the quantum notion
of observation O, the observer can in principle actually infer that
conclusion under ideal conditions and he cannot infer more under
any condition. This rule establishes the connection between the
mathematical formalism and the observers perceptions. The rule
does not follow from the formalism. The formalism is in harmony
with the rule. The rule justifies the representation of the formalism
in terms of pure quantum states.

The conclusion derived from the measuretnent thus consists in
indicating which pure quantum state of the mixture (2.29) or (2.30)
of the extended or original object system is realized after this
measurement. It could indicate equally well the realized pure quan-
tum state of an arbitrary system or group of systems of the measur-
ing instrument. For a great number of measurements on identical
object systems with identical initial operators the statistical pro-
bability of realization of a pure quantum state with index u is
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according to the statistical interpretation of (2.29) ot (2.30) xy,,(f)
(cf. 0,). The measuring result is independent of the place of the cut
in the measuring instrument 1).

Formally we can distinguish the following stages in the measuring
act. First the object system is coupled with the measuring instru-
ment, which gives the entangled state, then the systems of the
measuring chain are ignored, which gives the infringed mixture,
from which finally the realized state is selected. They are represented
by the scheme:

initial state ki (f) = T, Ky,(0)
. 87

“coupling ¥
entangled state 2 %y, Ky (8) Ko () -
ignoration 4 wy
infringed state 2 %Ki (?)
selection ' F
measured state Ki,.(t)

2.05 The measuring of observables. For every system ! we can define
a Hermitian operator ay¢) for which the functions ¢,,(¢) form a
system of orthonormal eigenfunctions with arbitrary prescribed
eigenvalues ay,(f). a,(¢) commutes with Hp(¢)

[HS(2), a,()] = 0. L (231

The condition (2.15) is then equivalent to the condition that Hj,(¢)
must commute with a,(¢), or in general

(Hy 1) (@), a()] = 0. (2.32)

In the pure quantum state ¢, (¢) the observable a;(f) has the value
ay,(t). A measurement, which decides which of the states ¢,,(¢) of /
is realized, also determines the value of a;(). It can be regarded as
a measurement of the observable a;(f). This establishes the experi-
mental meaning of the value of an observable.” Meanwhile, re-
membering 2.01, one should be careful in regarding 4;,(f) as the
proper value of ay(f).

If all eigenvalues of a,(t) are different

ay(t) # ay(t) forp #v, (2.33)

the value of a,(f) on the other hand uniquely determines the pure
quantum state of the system /. Therefore, instead of indicating
which state ¢y,(¢) of I is realized, the observer can in the ideal case
(2.33) equally well (and otherwise less well) record the value of
Physica XII 28
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a,(#). Usually the measuring results are thus stated in terms of
values of observables and not in terms of states. For this purpose it
is immaterial whether these values (defined as eigenvalues) have a
proper meaning in the sense of 2.01 or not.

2.06 Correlated observables. Similarly a correlation between the
states of various systems can also be expressed as a correlation be-
tween the values of observables of these systems. As a particular
case we consider the effect of ignoring the correlation with some
systems (infringement) on the correlation between the remaining
systems. This effect has in 2.03 been found to consist in the dis-
appearance of the non-diagonal statistical operators ky,(¢) (x # v)
of the latter systems. This has no influence upon the expectation
values of those observables, for which the operators are diagonal
with respect to the functions ¢,(f). That means that the correlation
between such observables, for which the operators commute with
the a,(¢), remains unaffected. For other observables the non-diagonal
elements are dropped and the correlation is more or less destroyed.
For observables, for which the operator has no non-zero ‘diagonal
elements with respect to the ¢,(¢), no elements remain and the cor-
relation is entirely destroyed.

2.07 The pointer reading. When for some system in the chain, say /,
the functions ¢y,(¢) read in g-representation

Cplp.(t) = S(ql - Qz;;): (234)
so that they are eigenfunctions of q;,
6Py = F1uPiy, (2.35)

we denote the measurement as a (pointer) reading. [ is called the
scale system. The measuring result of a reading can be expressed by
the value of the coordinate of the scale system.

A simplified model, which gives such a coupling between the
systems (! — 1) and /, that the values of the observables ay y(f)
are measured by the values of the coordinate q;, is obtained?)
witha Hamiltonian operator of the type

Hy () = hag—y(8)) + Hag—(@)p:. (2.36)
The condition (2.32) is satisfied. With the choice
gult) = hlag_y, ) (2.37)
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(2.18) gives

Y
+ —= [t flag_p), 000
P(t) = ¢ htof DR ouolto). (2.38)

We suppose that the wave function of the initial state of / reads in
grrepresentation

ei0(g1; to) = 3(g1 — o), (2.39)
so that q; has the initial value g4 :
UPu(to) = Gio%io(to)- (2.40)

(2.38) then gives
() = 8(qr— gio—Flap—,); Flag—,) =/ dt f(ag_n, (). (2.41)

If we put

: Ty = iy, — F(a(l—l)y-)r (2.42)
(2.41) becomes :
(Ply.(tl) = s(ql - 91;;)- (243)
These wave functions are eigenfunctions of q; with eigenvalues ¢,
%‘Pzp(tl) = %,LCPz,L(tl)- (2.44)
The orthogonality condition (2.20) requires
Qo # q for p F#v, (2.45)

which is at the same time equivalent to the condition (2.33). (2.45)
is satisfied if

F(ag_1yu) # Flag_y) for p #v. (2.46)
The spectrum of the values ¢, (2.42) need not necessarily cover the
whole domain of values of q; from — oo until + oco.

The momentum operator p; reads in g,representation

A 0
The matrix elements with respect to the functions (2.43) are
h o
Tr(plklvpt) = 7 E 8(% - qlp.)' (248)

The diagonal elements (u = v) are zero. Therefore the correlation
of the momentum p, of the scale system with observables of other
systems is entirely destroyed by the measurement of the canonical
conjugate coordinate q.
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2.08 Observational connections. For a relation between observa-
tional data we need at least two measurements. We consider two
succeeding measurements during the time intervals (fo,¢;) and (£,%)
with
performed on the same system 1. The first measurement measures
the states ¢;,(¢) or a corresponding observable a(¢), the second one
measures the states ¢j,(f) or a corresponding observable aj(z).

If the first measuring result indicates the final pure quantum state
eut) (& <t <tp), the statistical operator at the beginning £ of
the second measurement is k,,(¢), which is expanded according to

klp.y.(té) = Elx;pp,v’y'(ts) 'lp'v'(t('))
with g (2.50)
X;p.p.v’p.'(t(')) = Tr(k;v’y'(t(,))klpp(t(l))'
The statistical probability, that, after the first measuring result has
indicated the pure quantum state ¢,(f) (4, <?¢ <{p), the second
measuring result will indicate the pure quantum state oy, (¢) (¢ >1;) is

x;p,y,v’v’(t(’)) = T?’( iv'v'(tfl)) klyp(t(g)) = | (P;I’(té) CPl.u.(t(’)) |2' (251)

This conditional probability is actually the most elementary ex-

pression contained in the formalism, which denotes an observable

connection and which has a directly observable statistical meaning.

When the functions ¢y,(¢) coincide with the ¢(¢,,), i.e. when aj()
and a,(¢) commute, (2.51) becomes

x;[.m,v'v‘(t({)) = Sv'p (252)
and the second measuring result can be predicted with certainty
from the first. In this case we have essentially the repetition of a
measurement. (2.52) expresses the reproducibility of the measuring
result.

2.09 Intermingled states. The entangled state of two object systems
1 and 2 after a coupling of the type described above is of the kind

k|2 =3 Ky k“w k2p.w ' (253)
v

The probability of finding system ! in a state k; and 2in a state kj is
Tr(kok ko) = Z %, Tr(ky,K;) Tr(ka,ks). (2.54)
v

When k, and k; coincide with the projection operators k;,, and k,,,,
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(2.54) becomes equal to x,,3,,. This might (wrongly) suggest that
(after the coupling and before the measurement) the state of 1 and 2
is the mixture

kj, = E %puKipy Koy (2.55)

instead of the state (2.53). In this way the correlation between 1 and
2 would be partially destroyed by the omission of the non-diagonal
terms. In the mixture (2.55) the expectation value of the states k;
and k, would be

T”(k;zklkz) = E Kup Tr(kll‘# kl) T"(kgpﬂ kz) (2.56)

instead of (2.54). It has been emphasized by Furr y?) (in a some-
what different form and particularly against our common opponents,
cf. 2.11) that only if neither k; nor k; coincides with any of the ky,,
or k,,, respectively, (2.56) can be different from (2.54). Because the
latter case hardly occurs in the relevant applications, one is apt
to make the mistake of replacing (2.53) by (2.55) (and to draw un-
justified conclusions whenever this case does occur).

If 1 and 2 had been coupled with one or more further systems
3,.... according to

K. = vavp. klp.v k2;w k3p.v' s (257)
X

and these further systems had been ignored afterwards, the in-
fringed state of 1 and 2 would correctly be given by (2.55) indeed.
This infringed state is quite distinct from the entangled state (2.53).

2.10 Multilateral correlation. In (2.53) the transition operators
ki,, and ky,, belong to two systems of orthonormal wave functions
¢1,and ¢y, which span the (generalized) Hilbert subspaces R, and
R,. An interesting case 4) is that for which k;, can similar to (2.53)
also be expanded with respect to the transition operators 1;,, and 1y,
belonging to any two systems of wave functions ¢, and {3, in
Ry and R,, when one system is chosen arbitrarily variable but
orthonormal and complete, the other system suitably to the first

2%y, Ky Kopy = T 1ipo 1opo- (2.58)
JTRY po
A necessary and sufficient condition 4) for the occurrence of this case
is that the x,, are of the form
Ky = 1 Hps | | = % (2.59)
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The factorization of x,, means that kj, is a pure quantum state of
the combined systems 1 and 2 with wave function

P12 = E Xu Py Pope (2.60)

The unimodular coefficients %,/x could even be included in ¢;, or
P2y

"i“he special case under discussion can easily be generalized to the
following case. The functions ¢, and ¢;, are taken together in
groups @y,,., @1y, - - - and @gy,, P2y, - - - -, which span the (generaliz-
ed) Hilbert subspaces Ryy,Ryy,. ... and Ry,Ry,. ... respectively
Ri=Ry+Riz+ .... and R, = Ry; + Ry + ....). In these
subspaces we take any two sets of systems {,,, $1,,.... and
$2p Y20, - - - -» Of which one set is chosen arbitrarily variable but
orthonormal and complete, the other suitably to the first. It is
easily seen that the last part of condition (2.59) then has to be re-
placed by | x,, | = %,. In I1-dimensional subspaces R;, and Ry, all
I-representations are essentially the same.

An equivalent formulation of the generalized case is obtained by
taking instead of any two systems of wave functions ¢y, and ¢,
as in the special case, two definite systems of which one is chosen
arbitrarily fixed but orthonormal and complete, the other suitably
to the first. Ry;,Ry3,. ... or Ry, Ry, . . .. are then determined by the
sharpest division of R; or R, into subspaces, which span linearly
independent groups of ¢y, and ¢, or ¢y, and ¢, at the same time.

We restrict ourselves to the special case. First we show the ne-
cessity of (2.59). With (1.13) it follows from (2.58) that

oy T71(Kipy Ligy) = AgpT72(Kayy Lopo),
T 2(k2p.v lzpa) = AopI 1 (klvp. llpa) o
It follows directly that
Wyuw Yo TP (Rippy Ligp) = Agp Mo Ty (Kyp ligp) (0 =1,2),  (2.62)
so that (with x,, = xfy, Ao = M)

pﬂ'
| % [2 = | Agor 207 T, (Kpy Lipp) = 0 (¢ = 1 and 2).  (2.63)

(2.61)

Because one of the systems 1y, or 1,,, is arbitrarily variable and
complete in Ry or R, the latter alternative is excluded and we must

have
|xuv|=]7‘pa|=x2=7\2(x=7\> 0). (2.64)
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With (1.13) it further follows from (2.58) that

b Kv;l.Tyl(kl;w llap) k2p.v = )ap l2pcry

o (2.65)
ExvarZ(kZp.v 120p) klp.v = )‘ap llpa' :

These relations connect the arbitrarily and the suitably chosen
systems and establish the orthonormality and completeness of the
latter. With (1.08) we derive from (2.65)
1
l2pa lZo‘p’ — X xvy.xp.vTrl(klpvllop)Trl(klvy. llp a’)k2p.y. (266)
AapApa pwp
and
1

l2pp’ 800"= );;:}LE‘}I-' Ku'p Trl(klp.vllop) Trl (klvp.' llp'a’)k2py.’ (267)
and similarly for interchanged indices ! and 2. (2.66) and (2.67) must
be identical according to (1.08). Because one of the systems 1., or
1,5 1s arbitrarily variable and complete in R or R,, we must have

(remembering (2.64))

Rk = %2 %prps NyoRep =x? App 6 =21 >0). (2.68)
Then x,,, and A, must have the form

Yo = Ky Ry | % | = %5 Rgp = NEX, [ A | =N (2.69)

o pr

This shows the necessity of (2.59).
The sufficiency can be shown in the following way. Choose, say
in Ry, a complete system of orthonormal wave functions ¢;, and

choose for each p a constant A, with |2, | = A = ». Then take the
functions
1

q}Zp = )‘_p Zyxy (¢Tp cPI;L) Pops (270)

which are orthonormal and complete in R,. From (2.70) it follows that
1

"I)lp = )‘p Z— ("p;p <PZ;L) Pip- (2'71)
b ¥

The indices 1 and 2 could equally well have been interchanged. For
the transition operators we get

1
lZpa = EV X Yy Ir (klp.vllap) k2y.w

o (2.72)

1
X — Trz(k2y,y l2a'p) klp,v

llpﬂ = )\
v ¥op

op
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and :
KV[.LTrl (klp.v]lop) = AopTrZ (k2vp. l2po) : (2.73)

Therefore
) N kl/.w k2y.v = z Ko In (klp,v llap) llpa k2p.v
i povi pa (2.74)

= X ;‘up T72(k2v;1. l2ap) llpa k2,uv =X )‘op llpa l2ptr
Vi @ pio

This shows the sufficiency of (2.59). ‘

It is of importance for the discussion of the measuring process,
that (contrary to the expectation of R uar k 5)) multilateral cor-
relation between more than two systems is impossible. We first
show this impossibility for the case of 3 systems.

Suppose we would have the expansions

| 3P% =3 Yo Kipy Koy Kayy = pi Ao Lipo 12p0 lapa-_ (2.75)
With (1.13) it follows from (2.75) that
1y, T71(Kipy Ligp) T72(Kapy lagp) = AopT 73 (Kayy 130) (cyel.),
1y, T73(Kauy 1agp) = AgpT71(Kiyy lipo) T72(Kayy, Lops) (cyel.).
In the same way as before it follows that
| %y 12 = | Mg |* OF Trikiyligy) =0 (¢ =1,2and 3). (2.77)

(2.76)

Because one of the systems 1,,, must be arbitrarily variable and
complete in R;, we must have

[y | = | Rpe | = %2 =22 (x =1 >0). (2.78)
It further follows from (2.76) that

Tra(kayy lagp) T7a(Kay, 13p) =1
or He R wr (2.79)
Tr (kl,wllap)T”z(kzm 12pa') =0 (cycl.).

Then we must have
Trl(kl;wllap) = Tr2(k2y.v lZap) = Tra(kSp,vl3ap) = lorO. (280)

This would mean that the systems of 1;,,, I, and 1;,, should (but
for a simultaneous change of enumeration of the Greek indices of
the three corresponding operators and but for unimodular constants)
be identical with those of ky,,, Kz, and ks,,. This is against the
assumption. Multilateral correlation between the states of 1, 2and 3
is therefore impossible.
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For more systems 1, 2, 3,.... the impossibility of multilateral
correlation can easier be shown in the following way. Suppose we
would have the expansions

iz = 2 s Kipo K Ko+ = 2 Mgl - - (281)
Then
T7a.. . Kigs... = E R Ky Koy = E‘ Aop Lipp 12pp- (2.82)
Similar to (2.61) and (2.62) we get
T (K1 i) = NppT72(Kopp 1),

(2.83)
T 72(Kapp Yagp) = RopT71(Kypy Ligp)

and
Xi“Tr;(klp'“ llpp) = Af,pTr,(k,“# ]lPP) (l = 1,2), . (2.84)
so that
Ry = = Ay oF Tri(ky,, 1) =0 (I = 1and 2). (2.85)
Because one of the systems 1, is arbitrarily variable the latter alter-

native is excluded and because the traces in (2.83) are non-negative
we must have

Hpp = Agpe (2.86)
Further we have similar to (2.65)
2 Try(Kyup Lipp) Koy = Loy,
i (2.87)
E‘ Tra(Kapp Lopp) K1 = Lipp,
from which we derive
llpplloo = % TV] (klp.p.llpp) Trl(kly.y.llucr) k2p.p. (288)
and ]
llpp Spa = % T?’l (klj.l.p.llpp) 8p0k2p.[.l. (289)

and similarly for interchanged indices 1 and 2. Because (2.88) and
(2.89) have to be identical according to (1.08) we must have

Trl(kly,p. llpp)Trl(kly.y.]laa) = Trl (klp.p.llpp)spa' (290)

This would require
T71 (klp.y.llpp) = Spa (291)

for every u, p and o, which is impossible. Multilateral correlation
cannot extend over more than two systems.
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The proofs given for the special case of multilaterial correlation
in the entire spaces R), R,,. ... can easily be generalized to the ge-
neral case of multilateral correlation in the subspaces Ry, Ry, . . .
Ri3,Rp,....;.... only.

Now we see that also in the measuring process multilateral cor-
relation (in the special or in the generalized sense) cannot be trans-
mitted through the chain of systems of the measuring instrument.
The correlation (2.28) is uniquely determined. This excludes the
possibility of surpassing in the measurement conclusion the maximum
inference discussed in 2.04 by the application of multilateral cor-
relation.

2.11 Einstein’s paradox. We return to the two object systems 1
and 2 in the multilateral correlated state (2.58).

If the state of one of the systems, say 2, is entirely ignored, the
infringed state of 1 becomes

W2 Z Ky, =N E 1y, (2.92)
* : P

2

The sums (which are identical) denote the projection operator of the
(generalized) Hilbert subspace R;. In the mixture (2.92) all states
in R, have the same probability x? = 2. If R, coincides with the
entire (generalized) Hilbert space of wave functions of 1, the in-
fringed state (2.92) becomes entirely undetermined.

If in dealing with the entangled state (2.58) one would make the
mistake pointed out by Furry (cf. 2.09), one would get

Kz Z kl[l.p. k2p,p. = )\2 Z llpp (2.93)
[ P

Lo

In dealing with (2.82) we have seen that (2.93) cannot hold. (2.85)
does not express a correlation between pure quantum states of 1
and pure quantum states of 2 (in the way a member of (2.93) would
do). ,

If, however, (after the interaction between 1 and 2, which esta-
blishes the state (2.58)) one of the systems, say 2, interacts with a
measuring instrument, which measures the states l,,,, the infringed
state of 1 and 2 together after the latter interaction is

2 E 1y, Ly, (2.94)
P

This mixture is different for different types of measurements, i.e.
for different systems 1,,,. (2.94) does express a correlation between
peur states of 1 and pure states of 2. This correlation is of unilateral
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type. When the measuring result selects for 2 the state 1, the
state of 11is1yp,.

After the interaction between 1 and 2 has taken place, an ob-
servable by of | with eigenstates 1;,, can be measured in two dif-
ferent ways: either by a direct measurement on 1, or by measuring
an observable b, of 2 with eigenstates 1,,, (corresponding to 1;,,)
by a direct measurement on 2 (then 2 can be conceived as a part of
the measuring chain). At a first glance it might seem surprising and
perhaps even paradoxical that it is still possible to decide which
observable of 1 will be measured by a measurement on 2 after all in-
teraction with 1 has been abolished ) and that it is possible to mea-
sure independently two incommensurable observables a, and
b,([a;,b;] # 0) by applying the two measuring methods side by
side 7) 4). (Of course one should care for not making the mistake of
(2.93), which would naturally lead to paradoxical results).

When the eigenstates of a; are k;,, and those of b, are 1), a
measurement of a; selects a state out of the left member, a measure-
ment of b, selects a state out of the right member of the expression
(2.92) for the infringed state of 1. The probability that one measure-
ment selects the state ky,,, if the other selects the state llpp (or
opposite) is according to (2.51)

Tr(k, (2.95q)

mtl 1pp) ’

no matter whether a; and b, are both (successively) measured directly
on 1 or (no matter whether successively or simultaneously) one of
them on 1 and the other one on 2. When both are directly measured
on 1, the state in which 1 is left after the succeeding measurements
is k,,,, if the final measurement was that of a,, it is 1;,, if the final
measurement was that of b;. A paradoxical situation séems to arise
if one asks in which state 1 is left after aj has been measured on 1
and b, on 2 (or opposite). We have to remember (cf. 2.08) that all
observational statements bear on connections between measure-
ments. The state in which 1 is left has only an observational meaning
with regard to a succeeding measurement of an observable of 1, say
¢, with eigenstates m,,,. When the measurement of a; has selected
the state kj,,, the probability that the measurement of ¢, will
select the state my,, is

Tr(Ky,,My,)- (2.95b)
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When the measurement of b, has selected the state 1,,,, the pro-
bability that the measurement of ¢; will select the state m,,, is

Tr(llppmlﬁ). (2950)

Thus we get two different probabilities for the same event. This is
not unfamiliar in statistics, because the probabilities are (always)
conditional. They have only a meaning for a great number of com-
bined measurements of a,, b; and ¢;. The probability of finding a
state Ky, is x?, the probability of finding a state 1,,, is 32, the pro-
bability of finding a state m, . is then according to (2.95b) or (2.95c¢)

Xz pN Tr(klp,p ml,".) or )\2 p Tr(llpp m,,..,.). (2.96)
H p

Only these sums have to be identical and they are so according to
(2.92). The correlations between the measuring results for a,, b;and
¢; are described by (2.95).

Let us consider once more the measurement of a; and of by, one
of them directly on 1 and the other directly on 2. The latter measure-
ment can also be conceived as a direct measurement on 1 (the system
2is then regarded as a part of the measuring chain), which preceedes
the first mentioned measurement. The only pecularity of the present
case is that after the coupling between the object system 1 and the
first system 2 of the measuring chain of the earliest measurement has
been abolished (and even after the succeeding measurement has
been performed) one can thanks to the multilateral correlation be-
tween 1 and 2 still decide which observable will be measured by this
earliest measurement. But when we pay due regard to the correl-
ations between the various measuring results, this leads to no para-
dox. '

An illustrative example, which has been discussed by Ein-
stein a.0.7)4) and by Bohr a.o.$) 3)5), is that of two particles
(each with one linear degree of freedom) in an entangled state for
which the wave function reads in g-representation

S tasp

1
<P12=W3(41—92+Q)5” 2

(2.97)

This state can be realized by two particles 1 and 2 directly after
passing through two parallel slits at a distance Q in a diaphragm.
(2.97) describes the motion in the direction perpendicular to the
slits, parallel to the diaphragm. The total momentum P can be
determined from the total momentum directly before the passage
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through the diaphragm and the change of momentum of the dia-
phragm. The slits can be taken so far apart, that exchange effects
can be neglected.

(2.97) is of the form (2.60) with (2.59), as can be seen by expanding
(2.97) with respect to e.g. coordinate or momentum eigenfunctions
of 1 and 2

1 Jep Q Q
o et e
_ th f dn v R v (0 F) gr e ). (2.98)

R, coincides with the entire (generalized) Hilbert space of wave
functions of 1. The infringed state of 1 is entirely undertermined.
After a measuring result g, = g,, or p; = p,, 1 is “left” in the state

3(g1 — g + Q) or e 299)
and ¢y = ¢, — Q or p; = p — pP,, respectively. In this way the
coordinate or momentum of 1 is measured by the coordinate or
momentum of 2 after the interaction between 1 and 2. We come

back to this example in 5.06.

3. Operator relations.

3.01 Exponentials. In the ring of operators a generated by two
non-commuting Hermitian basic operators p and q, for which

. k
[p,q] = 1,ie.pq—qp = zf(h > 0), (3.01)

we are going to derive a Fourier expansion similar to that in a

commutative ring of functions a(p,g) of two real basic variables

p and g¢. For this purpose we need some exponentidl relations. It

should be remembered that we still have a rather specialized case,

because the commutator (3.01) of p and q commutes with p and q.

With (3.01) one has 2)

7t _ g Li n_1; _l_i Li "

e lm(1 422+ @) =lim (1 + 50+ 79)
. I 1z 1 ¢ \&rlin

= ——p)* —=q)" — 5 X 2 =
nlig:o(l—*—n hp) (1+n hq) (1 n2h)
=erPeF B (3.02)
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With (xp + yq) and (x'p + ¥'q) instead of p and q we get for (3.01)

[(xp + yq), (*'P + y'Q@)] = 2y’ — y«’ (3.03)
and for (3.02)
A (EHIB+0409) _ 3 P90 5 6Rye) g ) (3.04)

(Important special cases are y = ' = 0 or x = y’ = 0). Further

s i § i i
¢~ B G g Pty g Uptaa) _ g epye) g en—yf) (3.05)

Analogous to the (symbolical) relation
e [[dadg ¥ = 5 50, (3.06)
(3.05) gives the operator relation
% f f dE dy IO g 69 5 o 3(x) 8(y). (3.07)
Further analogous to . |
—}%2- / f / f dx dy dp’ dg'a(p’, q') £ ) a(p,q), (3.08)
we have

Zliff/fd" dy dEdne TP ) 5 ) 5 Gp ) 5 o)
= % f / f dx dy € dn &7 @10 g ;T EPI 5

- f f GE dm ¢~ % 09 5 i ot S(%) 3(n) = a. (3.09)

In the same way as (3.08) and (3.06) show that every (normalizable)
function a(p,q) can be expanded intoa Fourier integral

a(p,q) -_—-_/ dx dy a(x’y) eT (=t +y9)
with (3.10)

« (59) = 27 f f ap dg alp.g) X T,

(3.09) and (3.07) show that every operator a (with adjoint a') can be
expanded into

a =/fdx dy a(x,y) e¥ P
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1_/de d‘f) e—%(€p+nq)a e—%(xpﬂq) e% (§P+7)Q). (3'1 l)

with a{x,y) = %

This is already the Fourier expansion, but the coefficients «(x,y)
can still be expressed in a more simple form.
3.02 The trace. When U is a unitary operator

UtU =1, (3.12)
the unitary transformation
a’ = UtaU; ¢’ = Ug, ¢t = o'U! (3.13)

leaves all operator relations invariant. Therefore the latter can be
derived in a suitably chosen representation.

The eigenvalues ¢ of q and $ of p are assumed to run continuously
between — oo and + co. In q-representatxon the operators q and p
can be taken in the form

n o B3
Q=9 =¢p=P T o or —= 5 (3.14)
(8/8¢g is meant to operate to the left). With (3.04) we can write
[ x 8 x 0
eh(’p“q) en e""qe”’p eZueghez U . (3.15)
Expressing occasionally the inner product explicitely by an integral,
we get with (1.09), (3.15) and (1.05)
i x 9

i x 8 3 % 9
_;_Treh(xp+y'1)=_}]7%qu¢;r‘(q)e I e V2 : (P“(q)

~5=f4 cp;.(q—g)'e%” ouls + 2) =3 30). (3.16)

The result is independent of the chosen representation. Comparing
(3.16) with (3.07) and remembering the linear expansion (3.11) of a,
we see that Tra can invariantly be represented by the operator
relation

h

3.03 Fourier expansion. Rewriting (3.07), (3.09) and (3.11)
with the help of (3.17) we get

L rva — Zlfffdg dn e~ BP0 g g lete (37

ST A5 8), (3.18)
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-% /ﬁxdyiw(ae”i*”+”ﬁe7““”“==a (3.19)
and

a = [[dxdy alny) 5 7+
with ' (3.20)

a(x,y) — _}1? T?'(a 8_? (xp+:VCI)) .

(3.18), (3.19) and (3.20) are entirely analogous to (1.13), (1.14) and
(1.15). (3.18) and (3.19) respectively express the orthonormality and
the completeness of the systems of operators
1 i(xp+ym

—_—h
Vi ¢ (

(1.15) and (3.20) are the two ways we use for the expansions of
operators.

with variable x and y).

4. Correspondence.

401l von Neumann's rules. We now examine the rules of
correspondence I, II, IIT, IV and V’. First I and II.

We show that if between the elements a of one ring and the ele-
ments a of another ring there is a one-to-one correspondence
a < a, -which satisfies von Neumann’s rules (cf. 1.10)

if @ «-— a, then f(a) < f(a), I
ifa <> aand b «<—— b,thena b <> a + b, II

the two rings are isomorphous.
We get using T and II

(@ + b)? —a? — b = ab + ba <— ab + ba (4.01)
and also using (4.01)

a(ab + ba) + (ab + ba)a — ab — ba? = 2aba <— 2aba {4.02)

and further using (4.02)

(ab + ba)? — b(2aba) — (2aba)b =

— — (ab — ba)? < — (ab —ba)2. (4.03)
Therefore we have N
K ab — ba <— 4- (ab — ba), (4.04)
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and with (4.01)
ab «<— ab (for all a and b) or ab <—> ba (for all 2 and b). (4.05)

This means that the rings are isomorphous.

It follows that, if one ring is commutative and the other not, I and
IT are inconsistent ?). (When the commutators arc of the order of %,
the discrepancy is according to (4.03) of the order of 72).

4.02 Bracket expressions. Then V'. For the correspondence 2 <— a
between the commutative ring with generating elements $ and ¢
and the non-commutative ring with generating elements p and gq
with commutator (3.01) (p <— p and ¢ <— q) we show that the
rule (cf. 1.18)

ifa(p,q) «<— aand b(p,q) «<— b, then (a(p,q), b(p,q)) <— [a,b] V'

is self contradictory.
With

752 <« X, q2 <> Xp; ﬁa «~— Vi, q3 <~ Y2 (4.06)
we find from

3 (p%q) = p <~ §(x1,4] =P,

4.07
3 (szﬁ) =0<«— }[x,p]=0 ) ( )
and similar relations for g% and X,) that
( q
P> Pt g > a+o (4.08)
and from
*q) = ivial =p* + ¢y,

1) =0<«—4[yip] =0
(and similar relations for ¢* and y,) that
| p* < P’ + 3cp +dy, ¢ < q® + 369 + 4z (4.10)
(¢1, ¢2; dy, d2 are undetermined constants). Further we get

(2,42 =1p2g <> 3[(P*+3c1p+dy),(q?+co) ] =3(p*q+aqp?) +c1q, l

(4.11)
P3P 3(pa®+4q?p)+c.p
and

L(p%.¢%) = p%¢% < L[(P® +.3c1p + dy), (@ + 3c,q + )]

=31 (P’Q® + q%p?) + + h? 4+ 1q® + cp? 2. (4.12)
Physica XII 29
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With (4.11) we get
} (0%.099)= 14> <~ 3 [(3(p°a + 9p®) + c1q), (} (PQ® + &°P) + 2P)]
=} (p°q® + @°p?) + §72 —1@® — P’ —} ey (413
(4.12) and (4.13) can only be identical for ¢y = ¢, =0 and % = 0.
Therefore V' is self inconsistent (thz deficiency is of the order of #2).
4.03 Weyl's correspondence. And finally IIT and IV with para-
meters ¢ and ¢ (i.e. for the same rings as in 4.02). We denote the
density function by p(p,q). The rules (cf. 1.13)
1 <1, 4 ITI
if a(p,gq) < a and b(p,q) «~— b,
then [fdp dq o(p.q) a(p.q) b(p.q) = Tr(ab) IV
can be satisfied by (1.55)
a(p.g) = Tr(m(p.g)a), a = Jf dp dg o(p.q) m(p.q) a(p,g) (4.14)
with a transformation nucleus m(p,q), which satisfies (1.57), (1.58);

(1.59), (1.60)
Trm(p,q) =1, (4.15)

J/dp dq e(p,g) mp,g) = 1; (4.16)
Tr(m(p.g) m(p'.q")) = p~'(p,q) 8(p —$) 3(g—¢q), (4.17)

JI dp dq e(p.q) Tr(m(p,g) a) Tr(m(p,g) b) =
= Tr(ab) (for everyaand b), (4.18)

When we replace in (1.56) the complete orthonormal systems
kL (p.q) of (1.54) and k,, of (1.15) by the complete orthonormal
systems

%e‘f ##+90) of (3.10) and e? PV of (3.20),

we find a solution _ .
m(p’q) ____% /dx dy eT(’P‘f‘)“l) e_f(”P'H’ll) (419)

of (4.15), (4.16); (4.17), (4.18) with the density function

1
e(p.9) = - (4.20)
Then we get for (4.14)

a(p,q) = _}1; /dx dy e? (=P +99) Tr(e_7 (xp+yq) a),

. ' (4.21)
a —_.—-%- /dx dy e;(wﬂm)%//dp dq e_T(xP‘l’y']) a(?,q).
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With the Fourier expansions (3.10) and (3.20) this correspon-
dence reads ‘

/ dx dy a(x,y) eb 0 / / dx dy a(x,y) e* PV (420

which is Weyl's correspondence 2).

II is a consequence of IV and is therefore satisfied by the cor-
respondence (4.21). We will see what is left of I and V'. If 2 < a
and b <— b according to (4.21) we find with (3.04)

1 ’ ’ ’ ’
ab=F’//....ffdxdydx dy' dp dg dp’ dg’ .
) e%((x+x’)p+(y+:v’)q) 6-2_;_ (xy'—yx’) e_ %(w+yq+x’f)'+y’q’) a(ﬁ q) b(?‘) q) (423)

With the variables

a=x+x’x 7)=y+y'; c = 2 :T=—2_)

' ' (4.24)
/_x—x /_y_y P ' g’
V= 7= 5 o =p—P, T=q¢—¢,

this becomes

ab = %.// .. / dEdndE dvy dodrds’ dt’ e? Cptna) 35 6+ af)

g R o L 1o — 3t bo — Lo’ T+ b))

=% /fffda dn do dv &% B9 % ot
alc+ inv—4E) blc—in v+ }E)

- —/:15 [/_/fd& dndodre® ép+ne) ,— oty

10,2 .2 A ) .
(g4~1’ao' fﬁ a(o-"r))<e 43¢ 557 b(c,‘r)). (425)

The expressions in brackets at the end are a symbolical represent-
ation of Taylor expansion. With the substitution

E>x7n->9y,0>p,t—>q \4.26)
we get by partial integration

1 < (xp+yq) 1 '/:/‘
ab = — dx dy P — dp da .
h f/ ¢ h 7

i n 852 829
P Rt (a(;b,q) % S —349p) b(p:Q)) . (4.27)
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This gives for the Hermitian operators } (ab 4 ba) and %
. (ab — ba) the correspondence

5 2
a(p.q) cos (—87—3%—— %g) b(p.g) < } (ab + ba), (4.28)
YR ., ;
a(p.,q) sin 5 (_3?%—88—{75?_) b(p.q) < %(ab —ba). (4.29)

To the neglect of terms of order of %2 and higher (4.28) and (4.29)
would read

a(p.g) b(p.q) < % (ab + ba), (4.30)
a(p,q) -’;’- (3‘85 %—%—%> b(p.g) <> - (ab—ba). (4.31)

(4.30) would lead to I, (4.31) is equivalent to V'.
We examine which functions f(a) satisfy I. From (4.28) we see
that the correspondence
if 2 < a, then a" <-— a” (for every integer n) (4.32)
only holds if

h(d o 3 9

kcos o | — — — | at = att! i . (4.33
a” cos = (6p 3 5 B;D) at = a**} (for all integers & and /). (4.33)
First take for a a homogeneous polynomial in $ and g of degree n.
An elementary calculation shows that the condition

RS 2 5 a\
acosi(ggq—-—g%) a=a (4.34)
or
5 8 5 8\*

is only satisfied if  is of the form (xp 4 y¢)". Then it follows that
any polynomial in $ and ¢ can only satisfy (4.33) if it is a poly-
nomial in xp + ygq. This finally means that I can only be satisfied
if @ is a function of a certain linear combination xp + yg of $ and ¢-
With the help of the Fourier expansion (4.22) it is easily seen that
every (normalizable) function of xp 4+ yg does satisfy I. Therefore the
least restricted form of I, which is consistent with the correspondence
(4.21) is

fxp + y9) < f(xp + yq). (4.36)
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As to V', we see from (4.31) that for the correspondence (4.21) the
bracket expression ((a(p,g), b(p,9))) (cf. 1.14) defined by

if a(p,q) «<——aand b(p,q) <—b, then ((a(p.q), b(p.9))) «—[a,b] (4.37)
is given by

(@(p0) bp.g)) = alpg) 2 5in (2 o5 oo

2% % % 5p) HP9) (438)

If a(p,q) or b(p,q) is a polynomial in p and ¢ of at most 2nd degree,
we have a special case for which the bracket expressions ((«,5)) and
(a,b) coincide.

The correspondence (4.21) is a solution of III and IV. We have
not investigated the possibility of other solutions with the same
parameters p and gq. ’

5. Quasi-distributions.

5.01 Proper and improper representations. With W e y1's cor-
respondence (4.22) as a special solution of

1«1 11
if k «— k(p g) and a < a(pg),
then Tr(ka) = - f dp dq k(p.q) a(p.q) IV

(with parameters p and ¢ and density function p(p.,q) = 1/A), we
obtain a special case of a transformation between a representation in
terms of operators k and a and a representation in terms of functions

k(p,q) and a(p,q). Quantum statistics are usually represented in
terms of operators, classical statistics in terms of functions. We as-
sert that the usual description is also the proper one. The statistical
operator k of the quantum representation and the statistical distri-
bution function k(p,q) of the classical representation are non-ne-
gative definite, but in general the quantum £(p,q) and the classical
k are not. This makes that for orthogonal states, for which

Tr(kiks) =  [[ @ dg bip.g) Balp) =0, (501)

the product k;k, or k(p,q)k:(p.q) vanishes in the proper representa-
tion, but in the improper representation it need not. The equations
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of motion of the quantum k are described by infinitesimal unitary
transformations, those of the classical £(p,q) by infinitesimal ca-
nonical transformations (contact transformations), but the equa-
tions of motion of the classical k and the quantum k(p,q) are in
general not of these types. Because the improper representation is
formally equivalent to the proper one, it is (provided it is not mis-
interpreted) a correct description, though it is in general a rather
impracticable one.

In spite of its deficiences, or rather because of them, we discuss
some aspects of the improper representation of quantum mechanics
in terms of k(p,q) and a(p,q), i.e. the quasi-statistical description of
the Ist kind Q! (cf. 1.19). It more or less illustrates the ways along
which some opponents might hope to escape B o hr's reasonings
and von Neumann’s proof and the places where they are
dangerously near breaking their necks.

5.02 Transition functions. For the transition functions k,,(p.q)
corresponding to the transition operators (1.03) according to (4.21)
we find with the help of the g-representation (occasionally expres-
sing the inner product explicitely by an integral) similar to (3.16)

1 i(‘?+}“l) AR v iiz _i‘}'q —~Z i, ’
Bulbd) =3[ [axdy 8 7 [ag glig) T 3T 3 0, (q)
238 4., _22
=/dx (PL_(q) e2 8 gh e 2 ¢ (Pv(q)
z\ L, x
;fdx@ﬁ(q + 5)6" ”%(61—7). (5.02)

Because the wave functions ¢, are only determined but for a
factor ¢ ¥ (y real), the k,,(p.g) are only determined but for a factor
¢'® Yu—») The distribution functions, which are thus obtained with
Weyl's correspondence 2) become identical to those given by
Wignerl9). _

5.03 Proper value. In a distribution k or k(p,q) a quantity a or
a(p,9) can be regarded to have a proper value if the condition (2.10)

Tr(kf(@)) = f(Tr(Ka)) (5.03)

or
/[t da kb fa.a) = 1 (5 [[ ap dg Hpg) atpa)) 600
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is satisfied for every f. Whereas the validity of (5.04) is for a proper
(non-negative definite) k(p,q) already guaranteed by the validity
of the special case f(a4) = 4?2, it is not for a proper k or an improper
k(p,q). For a proper k the validity of (5.03) or (2.11) requires that a
is of the form

a(xp + yq) (5.05)

and k an eigenstate of a. For any k(p,q) the validity of (5.04) re-
quires that k(p,q) is of the form )

da(p.g) — a,), (5.06

which is a proper (i.e. non-negative definite) one. Because (5.03) and
(5.04) are identical, the conditions (5.05) and (5.06; are equivalent.
This means that the eigenstates of the operators a(xp 4 yq, and
of no other operators correspond with proper (and orthonormal
and therefore non-overlapping) distributions of the form (5.06), in
which a,, is the corresponding eigenvalue. This case would be rather
encouraging for a statistical description of the st kind S!, if it
were not just an exceptional case.
The eigenfunctions of a(xp + yq) are in g-representation

s 1 ,
Pplg) = —,—1 7 er (—ag 01 Hr0)  gor # 0,
? ; (5.07)
95(9) = vy 8(yg —p) * ¥ for x = 0.
(Y(p) real arbitrary). The corresponding eigenvalues are a(p)
a(xp + ya)e, = a(p)P,. (5.08)

p, which is the eigenvalue of xp + yq (for arbitrary fixed x and y),
runs between — oo and + oo. The domain of eigenvalues of
a(xp + yq) is therefore the same as that of the functions a(z)
(— o0 <z < 00). This means that the domain of the proper values
of observables, which have such, are unrestricted by quantum
conditions.

- Inserting the eigenfunctions (5.07) in (5.02) we get

PqP#

Py i\
ku(p.9)= (xﬁyq P““"’) — (G5B ey o) (5 00

(The expression in brackets in the exponent in (5.09) is a canonical
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conjugate of xp + yg). The &,,(p.q) are actually of the form (5.06).

5.04 The harmonic oscillator. After we have treated in 5.03
a special case for which the k(p,7) are of proper type themselves,
we now deal with a case for which their equations of motion are
of proper type. According to (1.43) and condition V' they are if
((H(p,9),k(p,9))) coincides with (H(p,q),k(p,q)) and according to
(4.38) this is the case for every k(p,q) if H(p,q) is a polynomial in
$ and ¢ of at most 2nd degree. This condition is satisfied for the
harmonic oscillator, for which H(p,q) coincides with the classical
Hamiltonian

2 —

Hpa)= b+ = 207+ 4= L= ¢ =gV, (510
m is the mass,  the classical circular frequency of the binding. We
consider ' and ¢’ as new canonical coordinates and omit the dash.

In g-representation the normalized stationary solutions of the
wave equation

no ©
e LI G o PR R CRE)
are
o (q)=—1——e“%q’H (L)e“"‘” #=0,12,....). (5.12)
" Vot Vah v o
The Hermitian polynomials H, (—\%ﬁ) have the generating
function
—£+2% 0o E o\ g
= L . 4
¢ Ry (\/h) H(\/h> (5:13)
(5.02) becomes with (5.12)
x
4+
! - (q 2)
bun($,9) = ———ee—[dx e B2 H \—"]"
#.4) V2t Iminh 4 Vh
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With (5.13) we get

om-tn 1 o
m%; Vm In! ( ) (7) mn 1) q (i Yoot
o

1

1 x x
1y o R w00 e oy (-5 % (e 3)

1
Rz

o o [ @ —in) 2 @+ i) =29 € —ip) +2n]

—2c 7 8 L2 e i 12 i) 25" 5.09)

gm0 IR
This gives

h @ +4%) min (m ") (__ 1)

—2 vmlnl b
kun(D,9)=2 v'm!nle o () {m—) x|

i (g+op)™ ™.

m+n

. (q_z'p)n——x (%)_2— —k e—i(m—n)wt

|m—n|

min (m,n) (_ ])K

N S
=2vVmnle 7 ¥ *“]/% ($*+4°)

k=0 (m—x)  n—s) In!’

: 4
$(m—n) arc tan 7 e_,'(m_,,) wt

' [% (P2+q2)]’”‘” o

minl 17200 171/2 5 o
= 2 (— 1)maxtmm) ﬂ’f'_e 7 [ 0+ V% ($2+g?)

max(m,n) 12

’(”Ia?(;t:') ( (pZ_‘r_q )> i (m—n) (arc tan % —wl). (5 16)
The Lf\”’) are associated Legendre polynomials. &,,(p,q) is
separated into a product of functions of the canonical conjugates
3($? + ¢?) and arc tan (p/q). The Enu(p,q) actually form a complete
orthonormal system. For the distribution function £Z,,,(p,q) of the
% eigenstate of }(p? + q?), the average value of %(752 + ¢?) is

m-l—%)h but it is not a proper value.

With (5.10) the transformation (1.47) gives the contact trans-
formation determined by

dgq §
7o g, ke wp, (5.17)
with solutions

_p = acos (ot —y), ¢ = asin (wf —y). - (5.18)
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The representative point in the phase space of a superstate rotates
uniformly about the crigin with constant radius V2 + ¢2 and cir-
cular frequency w. The rotation of the entire distribution k,,,($.9)
with this circular frequency o produces according to the last factor
of (5.16) a periodicity with circular frequency (m — n)w (like a
rotating wheel with |m —»n | spokes). Also this would have a
hopeful aspect for a description of type S!, if it were not one out of
a few exceptional cases.

5.05 The scale system. We shortly return to the measuring process.
We start with the most favourable case for a description of the Ist
kind S! and consider a system / in the measuring chain, for which the
distributions £,,,(p;,q)) do not overlap. The corresponding ki,
are then eigenstates of an operator of the form xp; + yq; (cf. 5.03).
The scale system is a special case (x = 0), which shows all essential
features. According to (5.09) we have

Rio(prg) = 8 (q; — Ty ‘fz‘%) gh TP (5.19)

By ignoration of one or more systems of the measuring chain the
non-diagonal functions (u # v) are dropped and only the diagonal
functions remain. Instead of (5.19) we get

By (Pugt) = (@i — qu) 3@ — ) (5.20)

(The latter 3-function is actually a remainder of the ignored distri-
bution functions). The effect on (5.19) of ignoration of other systems
is formally the same as that of integration over $ with density
function 1/A. This illustrates even more plainly than before (cf. 2.07)
how the correlation between $; and other observables is completely
destroyed by the reading of g,. So far there is no difficulty with an
interpretation of the 1st kind. We are only concerned with the value
of ¢;, which is a proper value and uniquely determines the distribu-
tion (5.20). The value of #; is indifferent. As soon as inference is
made about other systems in the chain with overlapping %,,(.9),
correct results are only obtained after the integration over ¢, (with
density function 1/k) has been performed (cf. 1.19). In a description
of the Ist kind this integration could only be interpreted as an
averaging over a great number of measurements. But the integra-
tion has already to be performed in a single reading and therefore an
interpretation of the 1st kind is excluded.
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5.06 Einstein’s paradox. The multilateral correlated state
(2.97) has according to (5.02) the distribution

kiapg po(P1:91; P2,92)= 3(q1 — g2 + Q)3(p1 + po— P). (5.21)

This shows clearly the correlation between ¢; and g, and between $,
and p,.The similarity.to a genuine distribution of the Ist kind is very
tempting.

Because (5.21) is highly singular we also consider the distribution

’ r Pl + Pl’
kiapgprgr (D191 Parg2) = 3(‘11 —4q2+ Q 5 ¢ ) 8(1’1 T pa— 5
. 8_ %’ (91+99) P—I_;_Pl‘" e%‘ (P1—bs) QI_—Z_QH (522)

(properly instead of (5.21) we should use eigendifferentials). The in-
fringed distribution after a measurement of ¢, or p; can be found
from (5.22) by integration over $, or ¢, respectively with density
function 1/A. This gives

1

’ ’" K PP PAPN oL
%8<91 —q, + Q ; Q )E_ h {91+9) - P (P\ 3 )(Q—“Q )(523)

or

’r

’ "y L =0 _ &, @0 b b
%3(151 + b _.P__-;_P_>e,, ot 557w (0SSP (5 oy
respectively. For the distribution (5.21) this becomes

g — g+ Q) or 33p+p—P).  (529)

The correlation between $, and p, or ¢, and g, respectively has en-
tirely disappeared. ’

If the state of 2 is entirely ignored, the distribution of the infringed
state of 1 can be found from (5.22) by integration over p, and ¢,
with density function 1/A. This gives

| i g i PO
2. q1(P—P" )Eh P(Q"—Q )8 N 2 . (526)

For the distribution (5.21) the result is 1/, the infringed state is
entirely undetermined (the normalization can be understood from
(5.26)). A measuring result g, = g,, or p, = p,, selects from (5.23)
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or (5.24) for 1 the distribution

' 1 ____G P—pr i _P’+P”\ , "
+ Q _;Q )8 7 (91'*"11;1.) 2 (P: 2 }(Q—Q ) (5.27)

et

1
% 8<q1 - 42,4

or

—Q _ I Q' +Q

’ 1 L 4] i3 e pre
FA bty g T SRR, (5

For (5.25) this gives

130 — g + Q) o T3py+pp— P (529)

Also in this example, in which all distribution functions derived
from (5.21) are non-negative definite, it is already the particular
part of the immediate integration over half of the parameters even
in a single measurement, which does not fit into an interpretation
of the 1st kind.

These few attempts and failures to carry through a genuine statis-
tical description of the 1st kind S! may suffice to illustrate the inten-
tion and troubles of such a conception.
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